好好学习,天天向上,头条粉丝购买平台欢迎您!
当前位置:首页 >  小学 >  二年级 > 内容页

小学二年级下册数学公式

2020-05-06 16:05:01二年级访问手机版168

  【导语】公式,在数学、物理学、化学、生物学等自然科学中用数学符号表示几个量之间关系的式子。具有普遍性,适合于同类关系的所有问题。以下是免费整理的《小学二年级下册数学公式》相关资料,希望帮助到您。

  小学二年级下册数学公式篇一

  1、每份数×份数=总数

  总数÷每份数=份数

  总数÷份数=每份数

  2、1倍数×倍数=几倍数

  几倍数÷1倍数=倍数

  几倍数÷倍数=1倍数

  3、速度×时间=路程

  路程÷速度=时间

  路程÷时间=速度

  4、单价×数量=总价

  总价÷单价=数量

  总价÷数量=单价

  5、工作效率×工作时间=工作总量

  工作总量÷工作效率=工作时间

  工作总量÷工作时间=工作效率

  6、加数+加数=和

  和-一个加数=另一个加数

  7、被减数-减数=差被

  减数-差=减数

  差+减数=被减数

  8、因数×因数=积积÷一个

  因数=另一个因数

  9、被除数÷除数=商被

  除数÷商=除数

  商×除数=被除数

  10、相遇路程=速度和×相遇时间

  相遇时间=相遇路程÷速度和

  速度和=相遇路程÷相遇时间

  小学二年级下册数学公式篇二

  追及问题:

  追及距离=速度差×追及时间

  追及时间=追及距离÷速度差

  速度差=追及距离÷追及时间

  流水问题:

  顺流速度=静水速度+水流速度

  逆流速度=静水速度-水流速度

  静水速度=(顺流速度+逆流速度)÷2

  水流速度=(顺流速度-逆流速度)÷2

  小学二年级下册数学公式篇三

  植树问题:

  1、非封闭线路上的植树问题主要可分为以下三种情形:

  ⑴如果在非封闭线路的两端都要植树,那么:

  株数=段数+1=全长÷株距-1

  全长=株距×(株数-1)

  株距=全长÷(株数-1)

  ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

  株数=段数=全长÷株距

  全长=株距×株数

  株距=全长÷株数

  ⑶如果在非封闭线路的两端都不要植树,那么:

  株数=段数-1=全长÷株距-1

  全长=株距×(株数+1)

  株距=全长÷(株数+1)

  2、封闭线路上的植树问题的数量关系如下

  株数=段数=全长÷株距

  全长=株距×株数

  株距=全长÷株数

  小学二年级下册数学公式篇四

  一、算术方面

  1、加法交换律:两数相加交换加数的位置,和不变。

  2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

  3、乘法交换律:两数相乘,交换因数的位置,积不变。

  4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

  5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:2+4)×5=2×5+4×5。

  6、除法的性质:在除法里,被除数和除数同时扩大或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。

  7、等式:等号左边的数值与等号右边的数值相等的式子叫做等式。

  等式的基本性质:等式两边同时乘以或除以)一个相同的数,等式仍然成立。

  8、方程式:含有未知数的等式叫方程式。

  9、一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。

  10、分数:把单位;1;平均分成若干份,表示这样的一份或几分的数,叫做分数。

  11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

  12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

  13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

  14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

  15、分数除以整数0除外),等于分数乘以这个整数的倒数。

  16、真分数:分子比分母小的分数叫做真分数。

  17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

  18、带分数:把假分数写成整数和真分数的形式,叫做带分数。

  19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数0除外),分数的大小不变。

TAG标签: 小学 二年级 下册 数学公式